
Parallel Unsteady Flow Line Integral Convolution for High-Performance
Dense Visualization

Zi’ang Ding∗
Department of Computer

Science,
Purdue University

Zhanping Liu†

Division of Computer
Science,

Kentucky State University

Yang Yu‡

State Key Lab of CAD&CG,
Zhejiang University

Wei Chen§

State Key Lab of CAD&CG,
Zhejiang University

ABSTRACT

This paper presents an accurate parallel implementation of unsteady
flow line integral convolution (UFLIC) for high-performance vi-
sualization of large time-varying flows. Our approach differs
from previous implementations by using a novel value scatter-
ing+gathering mechanism to parallelize UFLIC and designing a
pathline reuse strategy to reduce the computational cost of path-
line integration. By exploiting the massive parallelism of modern
graphical processing units (GPU), the proposed method allows for
real-time dense visualization of unsteady flows with high spatial-
temporal coherence.

Index Terms: I.3.3 [Computer Graphics]: Pictures / Image Gen-
eration

1 INTRODUCTION

Flow visualization plays an important role in processing, dis-
playing, analyzing, and interpreting vector fields resulting from a
wide variety of disciplines such as computational fluid dynamics
simulation, oceanographic-atmospheric phenomena modeling, and
electro-magnetic field analysis. There have been many geometry-
based techniques[8] for visualizing flows ranging from steady to
unsteady, and from planar to s urface and further to volume. Accel-
erated with graphics libraries and/or hardware, a lot of these meth-
ods enable real-time visualization. However, inappropriate seed
distribution and insufficient control over the density of geometric
primitives tend to incur an incomplete view or a cluttered image.

Texture-based flow visualization techniques [8] avoid the afore-
mentioned problem by taking image space as a large seed set, usu-
ally one seed per pixel, to synthesize a dense depiction of the vec-
tor field. Instead of explicitly rendering intermediate graphical
primitives (points, lines, and polygons) at discrete sample points
or along seed-dependent integral traces, the dense representation
created by texture-based techniques is a powerful way of convey-
ing both local features and global patterns of a flow. In particu-
lar, unsteady flow line integral convolution (UFLIC) proposed by
Shen and Kao [15, 16] provides a novel solution for visualizing
time-varying flows with high image and animation quality. The use
of a time-accurate value-scattering scheme coupled with a succes-
sive texture feed-forward strategy in UFLIC mimics the behavior of
real-world flows to achieve high spatial-temporal coherence. How-
ever, the high computational cost due to a huge amount of pathline
integration remains a major issue [12, 11, 10].

In this paper, we propose an accurate parallel implementation of
UFLIC for high-performance dense visualization of time-varying

∗e-mail:ding29@purdue.edu
†e-mail:zhanpingliu@hotmail.com
‡e-mail:yuyang@cad.zju.edu.cn
§e-mail:chenwei@cad.zju.edu.cn

flows. This method is unique for incorporating GPU-based path-
line integration and texture synthesis with pathline reuse. Our ap-
proach runs at real-time frame rates while maintaining high spatial-
temporal coherence.

The remainder of this paper is organized as follows. Section 2
introduces previous work closely related to our approach. Section
3 presents our parallel UFLIC algorithm, followed by a GPU im-
plementation. In section 4, we provide some results to demonstrate
both the efficiency and accuracy of the proposed method. We con-
clude this paper with a brief summary and outlook on future works
in section 5.

2 RELATED WORK

The past two decades have seen significant research on texture-
based techniques, as indicated in a comprehensive survey [8], while
our discussion herein is primarily focused on those closely related
to our work. Among the texture-based family, spot noise [18] and
line integral convolution (LIC) [2] draw the most attention and have
far-reaching impact. In particular, LIC has been widely used be-
cause of the high-resolution realistic representation and ease of im-
plementation. The basic idea of LIC consists in the application of
a 1.5D an-isotropic low-pass filter, shifted along the streamline that
is symmetrically advected from each pixel center, to white noise to
perform texture convolution. This image synthesis procedure em-
ulates what occurs when a rectangular area of (massless) fine sand
is blown by strong wind, exploiting and revealing the spatial cor-
relation in terms of intensity that exists between the pixels hit by
the same streamline. LIC is well suited for visualizing steady flows
and there have been many variations, optimizations, and extensions
such as oriented LIC [20], enhanced LIC [13], fast LIC [17], par-
allel LIC [22], and volume LIC [6, 14], to name only a few. How-
ever, it cannot be directly used to handle time-varying flows due
to the inability to address temporal issues. Forssell and Cohen [3]
proposed to use pathlines in place of streamlines to convey tempo-
ral coherence. Unfortunately, collecting texture values from down-
stream pixels does not comply with the real-world observation of
the behavior of a time-varying flow and therefore their attempt fails
to construct temporal coherence.

In contrast with LIC that employs an image-space oriented
Eulerian-based value-gathering scheme, unsteady flow line integral
convolution (UFLIC) adopts an object-space oriented Langrangian-
based value-scattering mechanism to achieve high spatial coherence
as well as strong temporal coherence. Specifically, scattering the
footprint (or property/texture value) of a particle to its downstream
locations along a pathline over several time steps not only correlates
a considerable number of intra-frame pixels to create crispy images
with accentuated flow streaks, but also correlates sufficient inter-
frame pixels to produce a smooth animation. In addition, UFLIC
uses a texture feed-forward strategy by which each output frame, af-
ter noise-jittered high-pass filtering, is taken as the input texture for
synthesizing the next frame. In this way, an even tighter correlation
can be established between any two consecutive frames to enhance
temporal coherence. Compared to texture blending techniques such
as LEA [7], IBFV [19], UFAC [21], and ISA [9] that incorporate

25

IEEE Pacific Visualization Symposium 2015
14–17 April, Hangzhou, China
978-1-4673-6878-0/15/$31.00 ©2015 IEEE

single-step flow line advection with an exponentially-decaying low-
pass filter, UFLIC demonstrates its advantage in maintaining high
spatial-temporal coherence. One drawback is that the large compu-
tational cost restricts its applicability to interactive visualization of
large flows.

The low computational performance of UFLIC is primarily due
to the intensive process of advecting long flow lines that typically
needs over 100 steps of integration for each pathline. In fact, there
is a huge amount of redundancy in pathline integration between dif-
ferent particles during the value scattering process. In other words,
different particles may leave their footprints or scatter their prop-
erty values to a large number of common downstream pixels. Mo-
tivated by this observation, Liu and Moorhead proposed an accel-
erated UFLIC (AUFLIC) algorithm [11, 12] that runs one order-
of-magnitude faster than UFLIC with the same image and anima-
tion quality. The essence of AUFLIC is to reuse pathlines both
within and between value scattering processes, wherever possible
and whenever possible, respectively. The ultimate goal is that in any
value scattering process, one and only one seed (particle) is made
available within each pixel, either explicitly placed from scratch at
the center at the exact beginning of an integer time step or implicitly
extracted from an existing pathline at an arbitrary position and/or at
a fractional time, to move downstream as it scatters its texture value
to its receiver pixels.

Li et al [10] presented a GPU-based implementation of UFLIC
(GPUFLIC) that exploits the programmability of commodity GPUs
to achieve interactive dense visualization of unsteady flows. To deal
with the restriction that the single-instruction-multiple-data (SIMD)
design of GPU imposes on data structures, they proposed an on-the-
fly depositing scheme to obviate the need for a ring-bucket value
accumulator as adopted in UFLIC. The interval between any two
consecutive time steps is sub-divided into multiple time slots, of
which each invokes a simplified, single-step value scattering pro-
cess to generate a sub-frame. A sub-frame is obtained by perform-
ing convolution on the texture values that the upstream particles
scatter within the current time slot. On an SIMD computing archi-
tecture, this time sub-division strategy effectively lengthens path-
lines and accordingly increases the actual window of a convolu-
tion kernel. As the output animation is created with only the sub-
frames corresponding to the original integer time steps (instead of
the shorter time slots), GPUFLIC essentially emulates multi-step
pathline integration and hence maintains higher spatial-temporal
coherence than by the aforementioned single-step texture advection
techniques [7, 19, 21, 9].

3 OUR METHOD

Sharing the same idea of pathline reusing [11, 12] as well as GPU-
based implementation to parallelize the pathline generation and
value scattering [10], here we present our highly parallel unsteady
flow line integral convolution algorithm. In our approach, the en-
tire pipeline, particle management, value scattering and depositing,
post-processing is fully CUDA-accelerated and achieves real time
frame rates for each test dataset. Figure 1 shows the overview of
our pipeline, and each step of our implementation will be discussed
in this section.

3.1 Particle Management
At the beginning of each frame f , new particles are released at the
center of every pixel in a domain of size M ×N, where M and N
are the spatial resolution of the output image. Also an image value
α = Tex f−1, where Tex f−1 is the image generated by the pervious
frame f −1 (Tex0 is the input white noise texture), is associated to
each particle. This image value α remains unchanged during the
entire life span of the particle.

During any frame the system has to maintain up to K = M×N×
L active particles, where L is the global particle life span measured

Initialize
system

Release new particles

Create mapping from initial
position to current position

Scatter and deposit value

Post-process Display result

Figure 1: The pipeline of our algorithm.

in number of frames. After reaching the steady state, at each frame
there are M ×N particles reach the life span, hence the memory is
recycled to be used by the new released particles.

Similar to the ”on-the-fly depositing” method used in GPUFLIC,
at every frame we only advect particles from their previous position
to the current time instead of tracing them through their entire life
span. The segment of a pathline in this time interval, named pathlet,
is used to scatter the image value α stored in particle to pixels in
current frame.

3.2 Pathline Reuse
After new particles released, all active particles in the system need
to be advected forwardly by the unsteady flow. However the ad-
vection can be accelerated by parallelizing the computation on
GPU [10], the redundancy in pathline integration [1] can be elimi-
nated by a pathline reuse strategy [11, 12].

The strategy is based on an assumption that a pathlet traced by
particle i at frame f can be reused by any particle j as long as i
and j are in the same pixel at the beginning of this frame. Though
those particles may diverge later, reusing pathlet has a very limited
influence on the final result which will be discussed at section 4.

Figure 2 illustrates the pathline reuse strategy. Two pathlines
Θ(red) and Φ(green) traced by particle θ and φ respectively, come
into the same pixel at the beginning of frame f , the dot curves indi-
cate the pathlets by continuing tracing θ and φ in this frame. Based
on the above assumption each dot curve can be reused by the other.
Furthermore, the system will release a new particle ψ(yellow) at
the center of that pixel. Its pathlet Ψ can also be reused by θ and φ .
Thus, at each frame, only the new released M×N particles need to
be advected to generate the new pathlets. All other active particles
reuse those pathlets during the value scattering and gathering step.

Θθ

Φϕ

Ψ

ψ

Figure 2: Illustration of our pathline reuse strategy.

26

3.3 Pathline Reuse based Value Scattering and Deposit-
ing

At every frame, the image value α associated with each particle
needs to be scattered over all pixels covered by its pathlet. With
our pathline reuse strategy, all particles at the same pixel will share
a newly created pathlet and therefore their associated image values
can be scattered together by the same pathlet. In contrast, GPU-
FLIC needs to scatter the value separately because all particles are
advected individually.

When the system releases new particles, each of them is stored
based on the initial starting position. In order to perform the value
scattering and depositing by using the benefit of the pathline reuse
strategy, each particle has to be fetched based on its current posi-
tion. This can be achieved by creating a mapping from particle’s
current position to its initial position.

The mapping process contains following three operations:

1. Pixel Particle Counting Each pixel counts the number of par-
ticles that located in it at the starting time of current frame.

2. Pixel Offset Computing A prefix sum operation applied on
the result of previous operation, and generates the offset for
each pixel in the mapping buffer.

3. Particle to Pixel Mapping Each particle maps itself to the
pixel by the current position and stores it to the mapping
buffer based on the offset computed in the previous operation.

Figure 3 illustrates the result after the mapping process. Each
pixel has a unique offset which point to the memory location in the
mapping buffer and the number of particles inside it, while the map-
ping buffer contains the actual memory address of each particle.

Offset Buffer Count Buffer

... ...Mapping Buffer

...Particle Memory

Figure 3: Illustration of the result after the mapping process.

The process of value scattering and depositing begins with trac-
ing a seed s(x,y) placed in the center of each pixel p(x,y). In each
step, a seed s(x,y) is advected by solving an ordinary differential
equation on the input unsteady vector field. We employ higher-
order numerical integration methods such as 4th order Runge-Kutta
to compute the new position POSk from the previous one POSk−1.
All particles located at the pixel p(x,y) corresponding to that seed
s(x,y), which could be fetched by the mapping buffer, scatter their
associated image values by depositing them to the pixels on the im-
age plane covered by the line segment POSk−1POSk. We use one
buffer BV to store the sum of weighted values ∑V ×w, and another
one Bw to store the accumulated weights ∑w. In our implementa-
tion, each weight is determined by two factors, namely, the life time
of the particle and the distance of the particle travelled in a pixel.

After scattering and depositing all values to the image plane,
each particle has to update its position and a scalar value τ , denot-
ing remaining life time, which is initialized as the global life span

L. Then the weighted average is computed by taking the division of
those two buffers ∑V×w

∑w . This weighted average can be displayed
as a grayscale image result of current frame, moreover, a color cod-
ing based on the magnitude of local velocity, some property scalar
fields, or the FTLE(Finite-Time Lyapunov Exponent) [5] field can
be used to generate a color image result.

3.4 Post-Processing
Mentioned in UFLIC [15, 16], the LIC method is really a low-pass
filtering process on the input image. Simply using the current result
as the input of next frame would lead to an over-blurred image.
Postprocessing is required to maintain a satisfying contrast of the
result throughout the animation.

The first step of the postprocessing is applying a high-pass filter
to enhance the image contrast. Similar to the UFLIC, the following
Laplacian operator is applied to the current result:

∣
∣
∣
∣
∣
∣

−1 −1 −1
−1 9 −1
−1 −1 −1

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

0 0 0
0 1 0
0 0 0

∣
∣
∣
∣
∣
∣

−
∣
∣
∣
∣
∣
∣

1 1 1
1 −8 1
1 1 1

∣
∣
∣
∣
∣
∣

(1)

In order to prevent the unnecessary high frequencies introduced
by the high pass filter, we apply a second step, named noise jitter-
ing, to the output from the high-pass filter. Similar to the GPUFLIC,
to address the frozen patterns in steady regions, this step replaces
the lower seven bits of the output by a periodic noise.

3.5 CUDA Implementation
The above presented algorithm can be fully parallelized on the mas-
sive parallel architecture such as CUDA (Compute Unified Device
Architecture)[10]. Although most parts of the CUDA-based codes
are identical to C code on CPU, there are still some details need to
be presented in our implementation.

3.5.1 Memory
As mentioned before, at any frame the number of total particles in
the system is bounded by K = M ×N × L. Thus, a pre-allocated
memory on the global memory in CUDA is used to store the in-
formation of particles, namely, the current position POS, the image
value α , and the remaining life time τ . This memory is divided
into L layers, each layer is further divided into M×N blocks which
store the information of one particle. At any frame f , all particles
in the layer f %L (f mod L) will reach their life span, and reuse by
the new released particles. Please refer to Figure 4 as the layout of
the global memory for particles.

remaining life time τ

image value α

current position POS

(a) (b) (c)

M

N

Figure 4: The layout of the global memory for particles.(a) the whole
memory is divided into L layers(4 in this figure); (b) each layer is
divided into M ×N blocks; (c) each block contains the information of
one particle.

The input 2D unsteady vector field is stored as a 3D texture mem-
ory in CUDA, which is cached and no extra cost on trilinear interpo-
lation. Each slice on the z axis corresponds to a time step in the 2D
unsteady vector field. With this configuration, the spatial-temporal
coordinate (x,y, t), where t is the global time, is transformed to the
texture coordinate (u,v,w) in our implementation to access the flow
velocity at any position of any time.

27

3.5.2 Concurrency
A race condition arises when two or more threads in CUDA attempt
to access the same global memory concurrently and at least one
access is a write operator. In our algorithm the value scattering
and depositing step will trigger the race condition, for example,
two threads attempt to update the value stored in the same memory
address of BV at the same time. Atomic operators supported by
CUDA such as, atomicAdd, are used in order to avoid unexpected
results caused by the race condition.

3.5.3 Bandwidth
To maximally optimize the use of the bus bandwidth, our algorithm
is implemented entirely on CUDA. At the initial state of the pro-
gram, the input unsteady vector field and white noise image are
transferred from the host memory to the video memory. After that,
no data transfer is needed. The result of each frame is displayed
effectively by using the pixel buffer object feature supported by
CUDA.

4 RESULT AND DISCUSSION

We implemented our algorithm described in section 3 using C++
and CUDA on a Windows PC. The platform we used in our experi-
ment has a hex-core i7 processor at 3.2GHz with 12GB of RAM and
an NVIDIA GTX590 CUDA-Enabled graphics card (dual GPUs,
1536MB video RAM per GPU).

Four time-varying vector fields, including PSI(figure 5), double
gyre(figure 6), wind flow(figure 7), and convection(figure 8) were
tested in our experiment. The life span used in each test case is
listed in table 1. Both PSI and Double Gyre are standard synthetic
datasets, while wind flow and convection are results from the nu-
merical simulation of certain physical phenomena. The color cod-
ing in figure 5 and figure 7 is based on the magnitude of local ve-
locity, while in figure 8 it highlights the temperature. FTLE color
coding is used in figure 6. For more information about the FTLE
color coding, please refer to [4].

Figure 5: PSI dataset.

Table 1 gives the performance of each dataset by our implemen-
tation. In all cases we are able to achieve real-time frame rates at
different image resolutions. We have implemented GPUFLIC algo-
rithm and make the performance comparison in the same hardware
platform. Table 1 indicates our algorithm outperforms it because of

the pathline reuse strategy. It is apparent in figure 9 that the perfor-
mance of GPUFLIC decreases faster and runs less stable than our
approach with the increasing of the life span.

Figure 9: Performance comparison in FPS with different life spans.
All results are tested on PSI dataset with resolution of 512×512.

In order to evaluate the influence of pathline reuse, we made a
side by side comparison between our approach and GPUFIC. The
first row in figure 10 shows the result of our approach on PSI dataset
without color coding, and the second row is the result of GPUFLIC
at corresponding frames. Our approach is able to capture the same
high quality crisp line patterns matching those generated by GPU-
FLIC.

5 CONCLUSION AND FUTURE WORK

We have presented a GPU-based parallel algorithm that synthesizes
LIC-like textures at real-time frame rates for dense visualization of
time-varying 2D flows. It is built on UFLIC to not only convey
very high spatial coherence in individual frames but also exhibit
very strong temporal coherence in the resulting animation. Our
algorithm runs faster than AUFLIC by taking advantage of GPU
parallelism while it differs from GPUFLIC due to a pathline reuse
mechanism as well as a relatively efficient on-the-fly value scat-
tering strategy. The results show that the proposed approach has
a great potential, in both visualization quality and computational
performance, to bring UFLIC to practical applications.

As for future work, we would like to extend our algorithm for
curved surface and volumetric flows. We are also interested in ex-
ploring the use of an adaptive step size integration method in path-
line advection.

ACKNOWLEDGEMENTS

The authors wish to thank Prof. Xavier Tricoche of Purdue Uni-
versity for his helpful suggestions and comments. This work was
supported by Major Program of National Natural Science Founda-
tion of China (61232012) and National Natural Science Foundation
of China (61422211).

REFERENCES

[1] S. L. Brunton and C. W. Rowley. Fast computation of finite-time lya-
punov exponent fields for unsteady flows. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 20(1):–, 2010.

[2] B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proceedings of ACM SIGGRAPH, pages 263–270,
1993.

[3] L. K. Forssell and S. D. Cohen. Using line integral convolution for
flow visualization: Curvilinear grids, variable-speed animation, and

28

Figure 6: Double gyre dataset.

Figure 7: Wind flow dataset.

unsteady flows. IEEE Transactions on Visualization and Computer
Graphics, 1(2):133–141, 1995.

[4] C. Garth, G.-S. Li, X. Tricoche, C. Hansen, and H. Hagen. Visu-
alization of coherent structures in transient 2d flows. In H.-C. Hege,
K. Polthier, and G. Scheuermann, editors, Topology-Based Methods in
Visualization II, Mathematics and Visualization, pages 1–13. Springer
Berlin Heidelberg, 2009.

[5] G. Haller. Distinguished material surfaces and coherent structures
in three-dimensional fluid flows. Physica D: Nonlinear Phenomena,
149(4):248 – 277, 2001.

[6] V. Interrante and C. Grosch. Strategies for effectively visualizing 3D
flow with volume LIC. In Proceedings of IEEE Visualization, pages
421–ff., 1997.

[7] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Lagrangian-eulerian
advection for unsteady flow visualization. In Proceedings of IEEE
Visualization, pages 53–60, 2001.

[8] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf. The state of the art in flow visualization: Dense and
texture-based techniques. Computer Graphics Forum, 23:2004, 2004.

[9] R. S. Laramee, J. J. van Wijk, B. Jobard, and H. Hauser. ISA and
IBFVS: Image space-based visualization of flow on surfaces. IEEE
Transactions on Visualization and Computer Graphics, 10(6):637–
648, 2004.

[10] G.-S. Li, X. Tricoche, and C. Hansen. GPUFLIC: Interactive and ac-
curate dense visualization of unsteady flows. In Proceedings of Euro-
graphics/IEEE VGTC Symposium on Visualization, pages 29–34, Lis-
bon, Portugal, 2006.

[11] Z. Liu and R. J. Moorhead. Accelerated unsteady flow line inte-
gral convolution. IEEE Transactions on Visualization and Computer
Graphics, 11(2):113–125, 2005.

[12] Z. Liu and I. Robert James Moorhead. AUFLIC: an accelerated algo-
rithm for unsteady flow line integral convolution. In Proceedings of
the Symposium on Data Visualisation, pages 43–51, 2002.

[13] A. Okada and D. Lane. Enhanced line integral convolution with flow
feature detection. In Proceedings of SPIE Visual Data Exploration
and Analysis IV, pages 206–217, 1997.

[14] C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl. Interactive
exploration of volume line integral convolution based on 3D texture
mapping. In Proceedings of IEEE Visualization, pages 233–240, 1999.

[15] H.-W. Shen and D. L. Kao. UFLIC: a line integral convolution algo-
rithm for visualizing unsteady flows. In Proceedings of IEEE Visual-
ization, pages 317–325, 1997.

[16] H.-W. Shen and D. L. Kao. A new line integral convolution algorithm
for visualizing time-varying flow fields. IEEE Transactions on Visu-
alization and Computer Graphics, 4(2):98–108, 1998.

[17] D. Stalling and H.-C. Hege. Fast and resolution independent line in-
tegral convolution. In Proceedings of ACM SIGGRAPH, pages 249–
256, 1995.

[18] J. J. van Wijk. Spot noise texture synthesis for data visualization. In
Proceedings of ACM SIGGRAPH.

[19] J. J. van Wijk. Image based flow visualization. ACM Transactions on
Graphics, 21(3):745–754, 2002.

[20] R. Wegenkittl, E. Groller, and W. Purgathofer. Animating flow fields:
Rendering of oriented line integral convolution. In Proceedings of
IEEE Computer Animation, pages 15–23, 1997.

[21] D. Weiskopf, G. Erlebacher, and T. Ertl. A texture-based framework
for spacetime-coherent visualization of time-dependent vector fields.
In Proceedings of IEEE Visualization, pages 15–23, Washington DC,
USA, 2003.

[22] M. Zöckler, D. Stalling, and H.-C. Hege. Parallel line integral convo-
lution. Parallel Computing, 23(7):975–989, 1997.

29

Figure 8: Convection dataset.

Table 1: Performance in average FPS.

Dataset Resolution Time steps Life span GPUFLIC (FPS) Ours (FPS) Speedup Ratio
PSI 512×512 101 4 19.5 86.6 4.4
PSI 1024×1024 101 4 7.0 31.9 4.6

Double Gyre 1024×512 100 4 14.1 59.3 4.2
Wind Flow 1024×512 41 4 17.4 65.4 3.7
Convection 1024×512 200 4 11.5 48.2 4.2

Figure 10: A side-by-side comparison between our approach and GPUFLIC on PSI dataset.

30

