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ABSTRACT  

Most texture-based 3D flow visualization techniques such as volume Line Integral Convolution (LIC) 
are limited to steady fields. Time-varying dense volume flow visualization is still an open problem 
due to intensive computation, demanding temporal-spatial coherence, and ad-hoc volume rendering. 
Our work is based on an enhanced Unsteady Flow LIC (UFLIC) algorithm, Accelerated UFLIC 
(AUFLIC), which uses a flow-driven seeding strategy and a dynamic seeding controller to reuse 
pathlines in the value scattering process to achieve fast time-dependent flow visualization. We first 
extend AUFLIC to time-varying volume flow fields for accelerated texture generation. To address 
occlusion, lack of depth cueing, and poor perception of flow directions within a dense volumetric 
texture, we employ a magnitude-based color-opacity mapping scheme in ray casting to clearly show 
flow structures in each frame and the flow evolution by means of a smooth animation. 

1  INTRODUCTION  
 
Texture-based dense flow visualization techniques are increasingly important in investigating 
computational fluid dynamics due to their increased resolution representation and due to the 
decreased mental reconstruction required compared to traditional graphical-icon based methods such 
as arrow plots, streamlines, and stream surfaces. The traditional methods achieve either a local, 
discrete, coarse view or a cluttered image of the flow field. Van Wijk presented a texture synthesis 
technique called spot noise [1] that visualizes flow data by stretching in the flow direction a 
collection of oval texture splats placed within the field. Later Cabral and Leedom [2] proposed Line 
Integral Convolution (LIC) that convolves an input noise texture using a low-pass filter along pixel-
centered symmetrically bi-directional streamlines to exploit spatial correlation in the flow direction. 
LIC synthesizes an image that provides a global dense representation of the flow, analogous to the 
resulting pattern of wind-blown sand. There have been many optimizations and extensions to LIC 
such as fast LIC [3], parallel LIC [4], LIC on curvilinear grids [5], LIC on triangulated surfaces [6], 
multi-frequency LIC [7], oriented LIC [8], enhanced LIC [9], dyed LIC [10], volume LIC [11], [12], 
and HyperLIC [13]. Heidrich et al. [14] incorporated indirect pixel texture addressing and additive / 
subtractive blending to accelerate streamline integration and texture convolution in LIC.  

In recent years many texture based methods have been proposed to visualize time-varying flow 
fields using intuitively more understandable representations of the flow evolution than pathlines, 
streaklines [15], and flow volumes [16]. Max and Becker [17] employed texture mapping in either 
forward grid warping or backward texture coordinates advection for time-dependent flow 
visualization. Forssell and Cohen [5] used pathlines as convolution paths in LIC to visualize 
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unsteady flow fields. Verma et al. [18] presented Pseudo LIC (PLIC) in which pre-synthesized 
template textures are mapped on sparsely placed pathline ribbons to emulate a dense flow 
representation. More and more methods take advantage of hardware acceleration to achieve high 
performance visualization. Jobard et al. [19], [20] developed an efficient rendering pipeline based on 
indirect pixel texture addressing [14] for fast texture and dye advections. Weiskopf et al. [21] 
applied pixel texture to visualize time-varying 3D vector fields. Van Wijk proposed IBFV [22] to 
advect a sequence of temporally-spatially low-pass filtered noise textures via forward texture 
mapping on warped meshes in combination with blending of successive frames to emulate many 
visualization techniques at interactive frame rates. IBFV was then used to visualize flow on arbitrary 
surfaces and enhance surface shape cueing by flow-aligned textures [23]. IBFV was even extended 
to 3D flows by decomposing the 3D advection to planar and longitudinal advections [24]. 
Independent of hardware acceleration [25], the LEA algorithm by Jobard et al. [26] employs 
backward integration to search the previous frame for the contributing particle, which scatters the 
texture value to the target pixel of the current frame. Temporal coherence along pathlines is created 
using successive texture blending while spatial coherence is improved using short-length directional 
low-pass filtering. Recently Laramee et al. [27] combined IBFV and LEA to address unsteady flow 
on large arbitrary triangular surfaces by projecting surface geometries to image space to which 
backward mesh advection and successive texture blending are applied. Weiskopf et al. proposed 
UFAC [28], which, based on a generic spacetime-coherent framework, establishes temporal 
coherence by property advection along pathlines while building spatial correlation by texture 
convolution along instantaneous streamlines.  

Among the most effective algorithms, Unsteady Flow LIC (UFLIC) proposed by Shen and Kao 
[29] uses a time-accurate value scattering scheme and a successive texture feed-forward strategy in 
the pipeline (Figure 1.a) to achieve both very high temporal coherence and very strong spatial 
coherence. At each time step a value scattering process (SCAP, Figure 1.b) begins by releasing a 
seed from each pixel and ranges through several time steps (i.e., life span), in which a pathline is 
advected for each seed to scatter its texture value to the downstream pixels along the trace. The 
values received by each pixel at a time step are accumulated and convolved to synthesize the 
corresponding frame, which, after noise-jittered high-pass filtering, is forwarded as the input texture 
to the next scattering process. The inconsistency between temporal and spatial patterns in IBFV [22], 
LEA [26], and UFAC [28] is successfully resolved by scattering fed-forward texture values in 
UFLIC. Value scattering along a long pathline over several time steps not only correlates a 
considerable number of intra-frame pixels to establish strong spatial coherence, but also correlates 
sufficient inter-frame pixels to build tight temporal coherence. Successive texture feed-forward 
constructs an even closer correlation between consecutive frames to enhance temporal coherence. 
Flow directions can be clearly depicted in individual images for instantaneous flow investigation 
while the animation is also quite smooth. To address the low performance of UFLIC, Liu and 
Moorhead [30] presented Accelerated UFLIC (AUFLIC) that is an order-of-magnitude faster than 
UFLIC and achieves interactive unsteady flow visualization by reusing pathlines in the time-
consuming value scattering process. 

Several texture-based techniques have been used to visualize flow on 3D curved surfaces [5], [6], 
[23], [27], [31] and volume flows. However, existing methods for dense volume flow visualization 
such as volume LIC [10], [11], [12], [32] and 3D IBFV [24] are limited to steady fields except for 
3D hardware-accelerated texture advection [21] which, unfortunately, depends on programmable 
texture fetch and per-pixel blending only supported by nVidia GeForce 3 graphics cards. Thus time-
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varying dense volume flow visualization is still an open problem primarily due to intensive 
computation, demanding temporal-spatial coherence, and ad-hoc volume rendering. In this paper we 
address this problem by extending AUFLIC [30] to 3D scenarios for fast volumetric flow texture 
generation and employing a magnitude-based color-opacity mapping scheme in ray casting to clearly 
show flow structures in each frame and the flow evolution in a smooth animation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The UFLIC pipeline and the value scattering process. 
  

The remaining parts of the paper are organized as follows. In section 2 we revisit the accelerated 
UFLIC algorithm. In section 3 we extend the algorithm to 3D flows and employ magnitude-based 
color-opacity mapping to ray cast dense volumetric flow textures. Results are given to show the 
effectiveness and efficiency. The paper concludes with a summary and directions for future work. 

2  ACCELERATED UFLIC 

In this section, we briefly describe the flow-driven seeding strategy and the dynamic seeding 
controller used in the 2D accelerated UFLIC algorithm, i.e., AUFLIC [30]. 

The time-accurate value-scattering process is the bottleneck of the UFLIC pipeline while a large 
amount of Euler pathline integration is computationally expensive due to intensive temporal-spatial 
vector interpolation and line segment clamping against pixels. In order to obtain a dense scattering 
coverage to exploit sufficient temporal-spatial coherence, UFLIC uses a conservative seeding 
scheme by which a seed is released from each pixel center at the first integer time step of each 
SCAP. Such a regular seed pattern does not take into account flow structures and particles are too 
dense in converging regions. Also, a pathline is always advected from scratch and is deleted when 
the life span expires. This simplistic use of pathlines ignores intra-SCAP and inter-SCAP 
correlations, which induces severe pathline redundancy. AUFLIC employs a fourth-order Runge-
Kutta integrator with adaptive step size and error control in combination with cubic Hermite 
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polynomial curve interpolation [33] to achieve faster, more accurate pathline advection, and faster 
line convolution (due to evenly sampling the texture) than the Euler method. The temporally and 
spatially flexible seeding scheme used in AUFLIC allows for a flow-aligned seed placement which 
substantially reduces pathline integration by copying and truncating pathlines in the same SCAP and 
reusing and extending pathlines between SCAPs. The dynamic seeding controller effectively 
implements the flow-driven seeding strategy to achieve dense value scattering by adaptively 
determine whether to advect, copy, or reuse a pathline for a given pixel in the SCAP. Table 1 gives a 
comparison of UFLIC and AUFLIC. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1. Comparison of UFLIC and AUFLIC. 

2.1 Flow-Driven Seeding Strategy 

The flow-driven seeding strategy is based on temporal and spatial seeding flexibilities which slightly 
decouple seed distribution with pixel-based image space and strict frame timing, but instead are 
geared toward physical space where the flow structure is exhibited by flow-aligned particles and 
toward a more continuous seed release than the intermittent mode used in UFLIC. Spatial flexibility 
allows a seed to be released at an arbitrary position within a pixel rather than exactly at the pixel 
center. Temporal flexibility allows a seed to be released within a small fractional time past the 
beginning of a time step (i.e., the first time step of a SCAP) rather than strictly at the very beginning 
of the time step point. Given the two flexibilities, seeds are released along known pathlines, if 
available, so that only a few of them need to actually advect pathlines; the rest can simply extract 
their pathlines using pathline copying and pathline reuse. Pathline copying is an intra-SCAP 
operation by which a seed’s trace in the life span is used, with only minor corrections, for those of 
other seeds successively released at several positions downstream along the same trace at fractional 
times shortly after the SCAP begins as long as they are released at the same time as the initial seed 
travels through their seeding positions. Each of these seeds travels through a different-length part of 

Items                                       Methods UFLIC AUFLIC 
pathline integrator Euler (first-order) Fourth-order Runge-Kutta (RK4) 

step size line-segment clamp against pixels adaptive step size 
error control none embedded Runge-Kutta formulae 

numerical accuracy first-order second-order * 

Pathline 
Integration 

overall efficiency slow and inaccurate fast and accurate 
temporal flexibility none (always at an integer time step) within a fraction past a time step 
spatial flexibility none (always from a pixel center) an arbitrary position within a pixel 

Flow Driven 
Seeding 
Strategy flow-aligned no (a lattice pattern) yes (release seeds along pathlines) 

intra-SCAP ignored copy and truncate pathlines SCAP 
Correlation inter-SCAP ignored reuse and extend pathlines 

seeding order left-to-right, top-down roughly left-to-right, top-down 
flow structure ignored adapt seeding to flow structures 

Dynamic 
Seeeding 

Controller dense coverage yes yes 
evenly line sample none by cubic Hermite polynomial Line 

Convolution accumulated line-segment lengths as weights scattering hits for averaging 
pathline integration a large amount substantially reduced 

performance low high (1 order-of-magnitude faster) 
 

Result 
 quality high temporal-spatial coherence high temporal-spatial coherence 

*: As a multi-stage integrator, the RK4 method for unsteady flow advection achieves only second-order accuracy 
when temporal interpolation is based on the assumption that the flow varies linearly between two time steps [15]. 
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the same curve during the first time step of the SCAP, but they synchronously run though the same 
trace over the remaining time steps. Pathline reuse is an inter-SCAP operation by which the position 
a pathline passes through within a fractional time into the second time step of the previous SCAP is 
used to release a new seed at exactly the same global time, but in the first time step of the current 
SCAP. This seed’s trace is obtained by reusing the latter part of the known pathline from the 
previous SCAP, appended with integration over an additional time step. Pathline copying applies 
whether a pathline is obtained by reuse or brute-force integration. Figure 2 illustrates the flow-driven 
seeding strategy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The flow-driven seeding strategy. Given the temporal and spatial seeding flexibilities, 
seeds released along a known pathline can copy and truncate in the same SCAP, and reuse and 
extend between consecutive SCAPs the pathline for fast value scattering without pathline advection. 

2.2 Dynamic Seeding Controller 

To implement the flow-driven seeding strategy, AUFLIC adopts a dynamic seeding controller to 
govern the seed distribution in a SCAP to determine for each pixel whether a pathline is advected 
from scratch, reused and extended, copied and truncated, saved for the next SCAP, or deleted. 
Without an effective controller, many seeds might be released from the same pixel in a SCAP as 
more and more pathlines are copied and reused while there might be no seeds released from other 
pixels in diverging regions. The dynamic seeding controller is used provide an adaptive, global, 
organized control over seed placement that prevents redundant pathline copying or reuse while 

 ξ  : an arbitrary position (not necessarily a pixel center).                        n+δ : a small fractional time past time step n.
a regular sample point used to receive scattered seed values.           Life span = 4 time steps. 
a seed released from a pixel center at time step k in SCAP k to advect a pathline from scratch for value scattering.
a seed released from ξ at k+δ in SCAP k along the known pathline to copy and truncate the pathline. 

seeds released from ξ at k+1+δ , k+2+δ , k+3+δ , k+4+δ  in SCAP k+1, k+2, k+3, k+4 along the known
pathline saved in SCAP k, k+1, k+2, k+3 respectively to reuse and extend the pathline. 
seeds released from ξ at k+1+δ , k+2+δ , k+3+δ , k+4+δ  in SCAP k+1, k+2, k+3, k+4 along the known
pathline reused in SCAP k+1, k+2, k+3, k+4 respectively to copy and truncate the pathline. 
the pathline (offset) of seed B in SCAP k that is obtained by copying and truncating that of seed A. 
the pathline (offset) of seed C in SCAP k+1 that is obtained by reusing and extending that of seed A. 
the extended part of the pathline that is advected in SCAP k+1 by seed C. 

pixels, of which the centers are not necessarily used as in UFLIC to release seeds exactly at time
step k, k+1, k+2, k+3, k+4 in SCAP k, k+1, k+2, k+3, k+4 respectively to advect new pathlines.

  time  step
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maintaining a dense value scattering coverage. There is a trade off between pathline reuse and 
advection: the more pathlines reused, the fewer pathlines advected in the current SCAP; the fewer 
pathlines reused, the more pathlines advected in the next SCAP. This situation implies the 
computational cost could severely fluctuate over SCAPs. To obtain a nearly constant frame rate for 
optimal overall performance, the dynamic seeding controller seeks to balance pathline reuse and 
advection in each SCAP. The controller works by dynamically updating a seeding state for each 
pixel that either allows for a seed release (when the pixel is open, i.e., there is not yet a seed release) 
or blocks further releases (when the pixel is close, i.e., there is already a seed release) to ensure no 
more than one seed is released from the same pixel in a SCAP. Figure 3 illustrates the dynamic 
seeding controller. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. The seeding controller dynamically updates the states of pixels by which to determine 
whether a seed is released (when the pixel is open) or blocked (when the pixel is close) and whether 
a pathline used in the current SCAP (k) is saved (e.g., the red pathline) for the next SCAP (k+1) or 
just deleted (e.g., the blue pathline). 
 

Governed by the seeding controller, a SCAP begins by reusing pathlines saved in the previous 
SCAP, followed by scanning the image in a left-to-right, top-to-bottom order to advect new pathlines 
for open pixels. Pathline copying is applied each time a pathline is reused or advected while several 
pixels in the opposite flow direction are reserved to enable pathline copying for right-to-left or 
bottom-to-top flows. The pathline, if blocked, is deleted; otherwise it is saved for use in the next 
SCAP. 

3  VISUALIZING TIME-VARYING VOLUME FLOWS USING AUFLIC 

In this section we first extend the AUFLIC algorithm to time-varying volume flows. We then adopt 
magnitude-based color-opacity mapping in ray casting to render dense volumetric textures to show 
interior flow structures. 

 

a pixel for which a seeding conflict happens for the next SCAP and a pathline (blue) is therefore deleted.

seeds released (red first) in the current SCAP (k)
to advect or reuse two pathlines. 
seeds released to copy and truncate the pathlines.
a seed that is intended to be released to copy the
pathline but blocked by an already released seed.
a regular sample used to receive scattered values.
a pixel for which a seeding conflict happens. 
a seed that will be released in the next SCAP
(k+1) to reuse and extend the pathline. This seed,
once chosen by the pixel, closes the pixel. 
a seed that will be released in the next SCAP to
copy the reused pathline. 
a seed that is intended to be released in the next
SCAP to reuse the pathline but is blocked. 

 
 

 

k                                                               k+1              time step 
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3.1 Three-Dimensional AUFLIC 

The extension of AUFLIC to volume flows is very straightforward. The flow-driven seeding strategy 
and the dynamic seeding controller work the same way in the volume field as in 2D scenarios. The 
small memory footprint of the algorithm allows AUFLIC to be used for large unsteady volume flow 
visualization. The major difference is the introduction of volume rendering in the pipeline to display 
generated volumetric textures using 2D images (Section 3.2). A white noise volume is typically used 
as the initial input texture. Sparse noise textures effectively used in steady volume flow visualization 
[32] can not be directly used in 3D AUFLIC for time-varying flows since the iteratively advected 
“empty” space may not follow the evolution of the flow, resulting in discontinuous flow lines. We 
implemented 3D UFLIC, 3D AUFLIC, and compared them on Dell Inspiron 2650 notebook PC 
running Windows XP (Mobile Pentium IV 1.70 GHz, 512MB RAM). Table 2 shows the time 
breakdown of the two algorithms for generating 41 volumetric textures from a time-varying volume 
flow dataset (144 × 73 × 81). The test shows 3D AUFLIC is nearly 5 times faster than 3D UFLIC. 
 
 
 
 
 
 
 
 
 

Table 2. The time breakdown of 3D UFLIC and 3D AUFLIC in comparison (in second). 

3.2 Magnitude-Based Color-Opacity Mapping 

Volumetric textures generated by 3D AUFLIC need to be displayed using volume rendering. 
Volume rendering techniques such as ray casting [34], ray tracing [35], splatting [36], shear-warp 
[37], and hardware-based texture mapping [38] eliminate the construction of intermediate geometric 
representations that is needed in iso-surface extraction [39], but instead operate directly on 
volumetric elements (voxels) by using a light absorption-transmission model and a transfer function 
to assign colors and opacities to voxels that are then composited along the view direction. Volume 
rendering has been extensively and successfully used in medical data visualization, though its 
application in rendering volume flows, particularly dense LIC texture volumes, is still limited due to 
occlusion, poor depth cueing, and most importantly lack of any physical meaning of a texture value. 
Without an effective transfer function, the interior flow structure and spatial orientation could not be 
revealed to provide an insight into the dense volume.  

The histogram of a volume AUFLIC texture (Figure 4) offers no guidance to transfer function 
design since it does not convey information provided by, e.g., that of a volume medical data which 
can be used to distinguish between different components such as bones and soft tissues. Fortunately, 
AUFLIC texture values exhibit temporal-spatial correlation along flow lines and hence can be used 
to compute gradients for use as normals in Phong shading. On the other hand, velocity magnitude, an 
important flow attribute, can be used to enhance or suppress certain parts of the flow. Thus we 
employ magnitude-based color-opacity mapping (Figure 4) to design transfer functions for volume 
rendering. It is similar to but different from the bi-variate volume rendering model [10] which is 

Items                                Methods 3D UFLIC 3D AUFLIC 
Data loading 41.57 40.96 

Value scattering 2830.47 552.58 
Convolution 4.83 4.84 

Noise-jittered high pass filtering 19.12 18.83 
Texture output 5.01 4.96 

Total 2901.01 622.17 
Acceleration ratio 4.70 
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used to render the mixture of two volumes. Figure 5 shows the rendering pipeline of 3D AUFLIC 
textures. Figure 6 shows two images generated using this method. Interior flow structures can be 
clearly revealed by tuning the magnitude-based transfer function while the flow evolution is shown 
by means of a smooth animation (see accompanying movies). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Magnitude-based mapping.        Figure 5. The rendering pipeline of 3D AUFLIC textures.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Two images of a time-varying volume flow generated by using magnitude-based color-
opacity mapping in ray casting. 

4  CONCLUSIONS AND FUTURE WORK 

Accelerated UFLIC uses a flow-driven seeding strategy and a dynamic seeding controller to reuse 
pathlines in the value scattering process to achieve fast time-dependent flow visualization with very 
high temporal-spatial coherence. We have extended this algorithm for time-varying volume flows 
and employed magnitude-based color-opacity mapping to ray cast dense volumetric textures. Interior 
flow structures can be investigated by adjusting the mapping function and the flow evolution can be 
shown in the smooth animation. Future work includes further accelerating AUFLIC by using shorter 
pathlines while maintaining high temporal-spatial coherence. Another direction is to improve 

ray casting 
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* : the color bar is the (r, g, b, α) map. 
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volumetric flow texture rendering by using, e.g., ROI masking, geometric clipping, and visibility-
impeding 3D halos [32]. 
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