
F low visualization is crucial to
data analysis in many computa-
tional areas. The past decade has

seen many flow visualization methods,
but streamlines—instantaneous curves
everywhere tangent to the flow—
remain one of the fastest and most
straightforward techniques. A stream-
line is generated through step-by-step
advection/integration from a given
point, the seed, usually in both negative
and positive directions. One intrinsic
problem with this geometry-based ap-
proach is that without an effective
streamline placement scheme, an in-
complete, nonuniform, or cluttered
display of the flow often occurs. A
global layout of evenly spaced stream-
lines, on the other hand, provides an
aesthetic and intuitive pattern for facil-
itating cognitive flow reconstruction. 

When creating evenly spaced stream-
lines, longer streamlines are better
because shorter ones might cause dis-
tracting discontinuities. To generate an
optimal placement, however, the ad-
vection of long streamlines must be
balanced with the uniformity of the
placement due to flow divergence and
convergence. In addition, cavities
might affect a placement when two
streamlines, separated by an excessive
distance, fail to accept another one in
between to meet a specified density.
Consequently, global placement of
strictly evenly spaced streamlines might

not occur. Furthermore, loops usually
exist in a flow field and might clutter or
even ruin a streamline layout. 

Although loop detection is critical to
streamline placement, few researchers
have addressed this issue. Here, we
describe an effective, robust, and fast
loop-detection strategy for creating
evenly spaced streamlines. At a negli-
gible additional cost, it allows interac-
tive streamline placement for complex
flows on an ordinary PC.

Evenly Spaced
Streamline Placement
We can roughly categorize existing al-
gorithms for placing evenly spaced
streamlines as image-guided and sample-
based. Image-guided algorithms1 adopt
an iterative process to produce an op-
timal placement by creating, merging,
repositioning, lengthening, or short-
ening streamlines by trial and error.
They accept a trial operation only
when the placement is refined—specif-
ically, when the trial reduces the dif-
ference between the low-pass filtered
version of the placement and a uniform
grayscale image. Sample-based algo-
rithms2–5employ intersample distance
control to approximate interline dis-
tance control in streamline advection.
They mainly differ from one another
in the greedy seeding strategy that dri-
ves the placement process until a dy-
namic queue of candidate seeds is

empty, and in the data structure they
use to store streamline samples and
perform intersample distance control. 

Given a threshold separating distance,
dsep, which governs the density of an
evenly spaced streamline placement,
sample-based algorithms require that
the interval between any two successive
samples of a streamline be less than dsep
to make intersample distance control
acceptable�any two streamlines are
separated by a distance equal to or
greater than dsep. We can generate
streamline samples using either a fixed
step-size integrator 2–4 or a fourth-order
Runge-Kutta integrator with adaptive
step size and error control (RK4-
ASSEC) coupled with cubic Hermite
polynomial interpolation (CHPI).5

RK4-ASSEC allows rapid but highly
accurate streamline advection. CHPI is
a fast, flexible curve-sampling scheme
that produces evenly spaced samples
along each streamline from raw samples
directly generated through RK4-
ASSEC. A brute-force but effective so-
lution for evenly spaced streamline
placement is to perform distance check-
ing on the newest sample of the current
streamline (NSCS) against each sample
of the other existing streamlines (SOES)
to determine whether the current one is
further advected or immediately termi-
nated. In contrast with Delaunay trian-
gulation,4 a Cartesian grid with the cell
size equal to dsep is usually superimposed
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on the flow field.2,3,5 Each cell main-
tains, through sample registration, a list
of pointers to the samples within the cell
that have been accepted. A distance con-
troller based on this data structure per-
forms distance checking on the NSCS
against only the SOESs within the
NSCS’s nine neighboring cells. If the
distance between the NSCS, and each
of the SOESs in those cells is equal to
or greater than dsep, the distance con-
troller accepts the NSCS, and the
streamline is further advected. Any
sample refusal immediately terminates
streamline advection, and the controller
then registers the existing samples of
the streamline.

Image-guided algorithms generate
high-quality placements, but the huge
computational cost restricts their prac-
tical applicability. Sample-based algo-
rithms run faster than image-guided
ones, though most of them2–4 still can’t
interactively place high-density evenly
spaced streamlines because they use a
fixed step-size integrator. In addition,
these algorithms tend to produce dis-
continuities and cavities in the place-
ment, and either ignore streamline
loops 2,3 or fail to provide a robust so-
lution to this critical issue.4

A Novel
Loop-Detection Strategy
Our fast, robust loop-detection strat-
egy is an important component of our
sample-based Advess (advanced evenly
spaced streamline placement) algo-
rithm.5 By using RK4-ASSEC, CHPI,
double-queue seeding, and adaptive
distance control, Advess is an order-of-
magnitude faster than Bruno Jobard
and Wilfrid Lefer’s algorithm,2 with
better placement quality, and is five
times faster than Abdelkrim Mebarki
and colleagues’ algorithm,4 with com-
parable placement quality but more ro-
bust loop detection.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Some 1% density streamline placements of a flow field. (a) A line
integral convolution (LIC)8 image shows five centers and four tightly spiraling
foci. (b) A placement generated without loop detection is heavily cluttered by
closed and spiraling streamlines. (c) When we choose a small, seed-based curve
length as the threshold beyond which to begin seed-based distance checking
on the current sample of a streamline for loop detection, all closed streamlines
are broken. The negatively advected part (in blue) and the positively advected
part (in green) of each of two streamlines squeeze together to cause an
ambiguity. (d) When we choose a large seed-based curve length threshold in a
naïve loop detector as in (c), some closed streamlines are still broken, whereas
some others are advected for excessive cycles. (e) The Mebarki loop-detection
strategy isn’t robust, and two streamline loops (red squares) leave artifacts. (f)
Our novel loop-detection strategy is robust enough to avoid any ill-looping
artifacts while retaining important flow features, such as closed streamlines and
spiraling structures.
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Loop Detector�A Sophisticated
Intraline Distance Controller
In this article, we loosely define a loop
as either a closed streamline or an open
but tightly spiraling streamline. Figure
1 shows some 1 percent density place-
ments of evenly spaced streamlines for
a 400 � 400 flow field that demonstrate
the critical role of loop detection in
streamline placement. Sample-based al-
gorithms are susceptible to loop clut-
tering or placement artifacts (Figures
1b, 1c, 1d, and 1e) due to locally ori-
ented distance control. Some general
algorithms are well suited to accu-
rately detect closed streamlines,6,7

although they’re too computation-
ally expensive to interactively place
streamlines. Furthermore, a discrep-
ancy exists between their global loop-
detection schemes and intersample
distance control mechanisms used for
evenly spaced streamline placement;
thus, it’s difficult to adapt them for
sample-based algorithms.

The distance controller described in
the previous section fulfills only inter-
line distance control. Samples of a
streamline aren’t registered in this
controller until the streamline is ter-
minated. This scheme is intended to
prevent a sample from being checked
against other existing samples of the
same streamline, thus no loop detec-
tion occurs, and the resulting place-
ment might be cluttered (as in Figure
1b). If sample registration isn’t de-
ferred such that the interline distance

controller can check the intersample
distance between intraline samples,
streamline advection would be termi-
nated from the very beginning because
the interval between any two succes-
sive streamline samples is less than dsep,
as mandated for acceptable interline
distance control. Mebarki and col-
leagues proposed the use of Delaunay
triangulation4 of streamline samples
for both interline and intraline dis-
tance controls, the latter to detect
loops. As discussed elsewhere,5 this
strategy isn’t robust and could intro-
duce artifacts (as in Figure 1e) or very
noticeable cluttering.

To effectively and robustly detect
loops, a sophisticated intraline distance
controller, or loop detector, needs to be
specifically designed for sample-based
algorithms. The newest sample of a
streamline being advected is first
checked by the intraline distance con-
troller and, unless rejected, is then
checked by the interline distance con-
troller. In this way, the two controllers
work in combination to create evenly
spaced streamlines without being clut-
tered by loops.

Toward a Universal Design
Without effective loop detection—that
is, sophisticated intraline distance con-
trol—a closed streamline would incur
excessive computation for many cycles
of advection. Even worse, these cycles
usually don’t coincide precisely with
one another when rendered to the

screen. Consequently, a closed stream-
line might look thicker or bolder than
nonlooping ones, introducing artifacts
in the placement (Figures 1b and 1e). A
spiraling streamline causes cluttering if
it spirals tightly enough (relative to
dsep). From the viewpoint of creating
evenly spaced streamlines, therefore, a
streamline is ill-looping when the dis-
tance between any two successive cy-
cles is less than dsep. When a spiraling
streamline spirals tightly enough, it is
ill-looping either as a whole—that is,
everywhere (Figure 2a)—or only in part
(Figure 2b). Under this definition, a
closed streamline is always ill-looping
as a whole.

We can’t use the distance between
the current (newest) sample and the
seed of a streamline for effective loop
detection because a spiraling stream-
line might be ill-looping only in part,
and the ill-looping part doesn’t neces-
sarily begin with the seed (as in Figure
2b). A loop-detection scheme based on
seed-based distance checking might
fail to detect an ill-looping spiraling
streamline if the ill-looping part is on
one (Figure 2b) or both sides of the
seed (in blue and green in Figures 1c
and 1d, respectively). To prevent
streamline advection from being ter-
minated from the very beginning
while detecting loops, a naïve trial
might choose a seed-based curve
length threshold, beyond which the
loop detector performs seed-based dis-
tance checking on the current sample.
The problem is that a closed stream-
line tends to be terminated just prior
to the first cycle’s formation due to the
seed-based distance being less than dsep
when the threshold is small relative to
the circumference (Figure 1c). Given
an unknown flow field in which a
closed-loop region—that is, a center—
could be considerably large, even a
large threshold might not allow the
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(a) (b)

dsep

Figure 2. Two spiraling streamlines advected inward. (a) One streamline is ill-
looping as a whole, whereas (b) the other is ill-looping only in part. The ill-
looping part (shown in red) might (as in (a)) or might not (as in (b)) begin
with the seed. A naïve loop-detection strategy based on seed-based distance
checking might not detect the ill-looping part (as in (b)).
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first cycle of a larger closed streamline
to form, whereas smaller closed
streamlines are advected many cycles
to cause artifacts (Figure 1d). Closed
streamlines are important flow features
that a placement needs to retain by en-
abling the formation of the first cycle
rather than excessive cycles or dis-
tracting broken loops. In fact, the dis-
tance between each existing sample
and the current one should help focus
loop detection on the ill-looping part
of a streamline. We can’t use the loop-
ing angle between the seed and the
current sample as a threshold beyond
which to begin simplistic seed-based
distance checking. Instead, we must
use the looping angle between each ex-
isting sample q and the current sample
p0—that is, the ill-looping angle of q
(relative to p0). To retain important
flow features without loop cluttering,
a universal loop-detection strategy
needs to consider both the ill-looping
angle and the intersample distance of
each existing sample relative to the
current sample.

A Robust Strategy
An ill-looping streamline might not
clutter a placement if the largest ill-
looping angle is limited to exactly one
cycle for a closed streamline or near
one cycle for a spiraling streamline. Al-
lowing the ill-looping part to advect as
long as possible within the one-cycle limit
encourages a closed streamline to form
the first cycle and a spiraling streamline
to demonstrate the structure in detail
without cluttering the placement.

Specifically, an ill-looping stream-
line is advected until the current sam-
ple p0 makes both the ill-looping angle
of an existing sample pn equal to or
greater than 2� – � (� is a small
threshold angle) and the distance be-
tween pn and p0 less than dsep. A raw
but effective loop-detection strategy is

to check each existing sample against
the current sample with respect to the
distance and the ill-looping angle to
find the first pn-like sample, if any ex-
ist. In fact, each existing sample’s ill-
looping angle isn’t obtained via
segment-wise angle accumulation be-
cause trigonometric computation in-
curs a large cost; additionally, many
accumulated angles would need to be
updated nontrivially each time “the
current sample” is updated. Instead,
we measure it indirectly using a dot-
product between two normalized vec-
tors, which lets our loop detector add
only a negligible additional cost to
evenly spaced streamline placement.
This is a critically important issue be-
cause most of the streamlines advected
in an average flow field aren’t ill-
looping. However, given a threshold
angle �, a sample pm might exist such
that the ill-looping angle is equal to or
less than �, and the distance between
pm and p0 is less than dsep. Thus, the
dot-product scheme causes an ambi-
guity between pm and pn in terms of the
ill-looping angle. Our loop-detection
strategy must distinguish between an
opponent sample pn (see Figure 3) and a
proponent sample pm when both are less
than dsep to the current sample p0 and
simultaneously the two associated flow

vectors, vn and vm, are aligned, within
a small threshold angle �, with the lat-
est unidirectional line segment vector
v1 (that is, one of the bidirectional seg-
ment vectors that points in the positive
flow direction). As p0’s “long-term �-
neighbor,” pn approaches the one-cycle
limit, whereas pm, as p0’s “short-term
�-neighbor,” doesn’t. 

We use two vectors—(un0, un1) or
(um0, um1), pointing toward the current
sample p0 and the previous sample p1,
respectively, from any opponent or
proponent sample�to compute two
dot-products with v1. Therefore, we
can distinguish pn from pm by at least
one negative dot-product for positive
advection. This holds for negative ad-
vection, too, if the two dot-products
are negated. We might find several
proponent samples through a loop-de-
tection process, which runs for each
newly generated sample. However, any
opponent sample terminates such a
process because the ill-looping part
has been advected enough (ill-looping
angle >= 2� – �) to perform loop clas-
sification by testing whether the vec-
tor pointing from p0 to pn is aligned,
within a small threshold angle �, with
the integration vector (in the negative
or positive flow direction) at p0. Our
test shows satisfactory results using �
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Figure 3. Our loop-detection strategy. Given the current sample p0 and the
previous sample p1 of an outward-negatively advected streamline, the strategy
distinguishes an opponent sample pn (|p0pn| < dsep and �n <= � ; any such sample
terminates a loop-detection process) from a proponent sample pm (|p0pm| < dsep

and �m <= �; several samples of this kind might appear during a loop-detection
process) by at least one negative (negated here) dot-product, regardless of pn

being (a) trigonometrically beyond or (b) between the segment p0p1. Samples
along the black part of the streamline are not p0’s “�-neighbors” and hence are
simply skipped without proponent–opponent disambiguation. We exaggerate
segment p0p1 and � here for illustrative purposes.



90 COMPUTING IN SCIENCE & ENGINEERING

= 20� and � = 10�. This loop-classifica-
tion scheme isn’t as accurate as those
used in general loop-detection algo-
rithms,6,7 although it makes our loop-
detection strategy robust enough to
avoid any cluttering. Figure 3 shows
the two possible cases for outward
negative advection.

A Fast Solution 
We designed our loop-detection strat-
egy to be fast; it checks the distance

from each of the existing samples of a
streamline to the current sample to
ignore any samples greater than or
equal to dsep because they don’t cause
ill-looping artifacts. Only the remain-
ing samples undergo proponent–
opponent disambiguation to deter-
mine if an opponent sample exists to
approach the one-cycle limit relative
to the current sample. To reduce the
amount of distance checking, our loop
detector adopts an extended version of
the data structure used in the interline
distance controller. Thus, distance
checking involves only the existing
samples within the current sample’s
nine local cells. Furthermore, the
signed RK4-ASSEC step index, a neg-
ative or positive integer determined
by the advection direction, is attached
to each raw sample as the stamp. Each
of the evenly spaced samples along the
streamline, which are generated
through CHPI, is assigned a neigh-
boring raw sample’s stamp. If the
stamp difference between an existing
sample and the current sample is less
than a given integer threshold �, this
existing sample is assumed to be a pro-
ponent sample and passes the stamp
check. In this way, many proponent
samples are simply skipped on a per-
sample basis through fast stamp
checking without undergoing distance
checking against the current sample.

In addition, each cell of the loop de-
tector maintains the minimum (over-
written in negative advection) and
maximum (overwritten in positive ad-
vection) stamps of the existing samples
within it, and hence many samples are
efficiently skipped on a per-cell basis
by using the extreme stamp of the cur-
rent direction for stamp checking. A
conservative value for � might be 4; a
larger one could be used due to the
smooth curves obtained by an RK4-
ASSEC integrator.

The loop detector first checks the
current sample of a streamline and, un-
less it finds an ill-looping cycle, sends
the sample to the interline distance
controller. Otherwise, the advection is
terminated, and the ill-looping stream-
line is classified to either form a closed
loop or simply refuse further spiraling.
The loop detector is cleared upon the
advection of each new streamline.

Results and Discussion
We’ve implemented our loop-detection
strategy as part of our Advess algo-
rithm using Visual C++ on a Windows
XP/Dell notebook (1.70 GHz, 512
Mbytes RAM). The Mebarki loop-de-
tection method based on Delaunay tri-
angulation4 is the only other scheme
designed for and integrated into evenly
spaced streamline placement. We com-
pared their algorithm (see www-sop.
inria.fr/geometrica/team/Abdelkrim.
Mebarki) with Advess on the same
platform. Figure 1a shows a line inte-
gral convolution (LIC) image of a 400
� 400 synthesized flow field with five
centers and four tightly spiraling foci,
which demonstrates how well the loop-
detection strategies handle both closed
and spiraling streamlines. Figure 1 also
shows five 1 percent density compara-
tive placements of evenly spaced
streamlines generated for the same
flow field. Figure 1b shows the place-
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(a) (b)

Figure 4. Two 1% density evenly spaced streamline placements. We compared
(a) Mebarki and colleagues’ algorithm and (b) our Advess algorithm in
visualizing a 661 � 481 simulated ocean flow field. Our loop-detection strategy
allows Advess to generate a layout without ill-looping artifacts, whereas the
Mebarki approach fails to detect some spiraling loops, two of which (red
squares) are very noticeable in the resulting placement.

Figure 5. A 1% density placement of
evenly spaced streamlines. This
placement is the same using Advess
both with and without our loop-
detection strategy for a 400 � 400
flow field without centers or tightly
spiraling foci.
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ment created using Advess without any
loop detection. Figures 1c and 1d show
the placements produced using Advess
with a naïve ineffective loop-detection
scheme, which works via seed-based
distance checking beyond a small seed-
based curve length threshold and a
large one, respectively. Figures 1e and
1f show the placements generated us-
ing the Mebarki algorithm and Advess
coupled with our loop-detection strat-
egy, respectively. The Mebarki ap-
proach might introduce loop artifacts
or noticeable cluttering into a place-
ment, whereas ours is robust enough
to detect all ill-looping streamlines,
resulting in an image showing impor-
tant flow structures in a detailed but
clean manner. Figure 4 uses a 661 �
481 ocean flow field to compare these
two strategies and adds strength to
this conclusion.

Figure 5 shows a 1 percent density
evenly spaced streamline placement
generated using Advess for a 400 �
400 flow field without centers or
tightly spiraling foci. This synthesized
flow demonstrates our loop-detection
strategy’s negligible additional cost.
Given a flow field with centers and
tightly spiraling foci, such as that in
Figure 1, our strategy’s additional cost
is outweighed by the large expense of
conducting intersample distance
checking on excessive samples of ill-
looping streamlines without loop
detection. Table 1 gives the time con-
sumption, in seconds, of creating
evenly spaced streamline placements
for  the aforementioned three flow
fields. Source code for Mebarki and
colleagues’ algorithm is unavailable,

so we can’t give a very precise com-
parison between their approach and
ours purely in terms of detection
speed, although this speed difference
contributes a lot to the large differ-
ence between Mebarki’s streamline
placement algorithm and ours in over-
all expense. 

A t a negligible additional cost, our
loop-detection scheme is fast

enough to support interactive and ro-
bust layout of high-density evenly
spaced streamlines for complex real-
world flows. We plan to extend this
strategy for view-dependent place-
ment of evenly spaced streamlines on
curved surfaces. This work will address
image-space-oriented streamline place-
ment for visualizing large flows in
perspective-view settings.
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Flow fields used for creating 400 � 400 flow 661 � 481 flow 400 � 400 flow
1% density evenly spaced with centers and foci with centers and foci without centers or foci
streamline placements

Mebarki and colleagues’ streamline 4.286 3.647 N/A
placement algorithm, with Delaunay
triangulation-based loop detection
Advess with our loop-detection strategy 0.280 0.986 0.262
Advess without any loop detection 0.671 N/A 0.224

Table 1. Time consumption (in seconds) measured for evenly spaced streamline placements.
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